
Introduction
For clarification of the information processing mechanism of the brain, the temporal characteristics 

reflecting activity patterns or the timing of activation signal changes in various areas of the brain as 
well as spatial information related to functional specificity and selectivity were examined. Several 
functional MRI（fMRI）studies using tasks have focused on the latter. They have identified brain 
areas involved in specific functional characteristics, resulting in producing spatial functional brain maps 
providing static aspects of brain function [1-10]. However, the brain is not a static system, but a 
dynamic one that is constantly active. Therefore, obtaining information on the dynamic activities from 
each area of the brain or signal flow between brain areas is key to understanding how the brain works 
[11-20]. In recent years, the spatial resolution has been improved by high magnetic field MRI, but 
basically there is no change in the meaning of measuring the spatial characteristics on the function of 
the brain [10, 21]. To acquire the temporal information needed to make brain maps reflecting dynamic 
information, this study examined the possibility of estimating the latency distribution among category-
specific brain areas across the whole brain via resting-state fMRI（rs-fMRI）signals. This did not 
require a number of tasks or scan time to acquire that kind of information by utilizing task fMRI. 
Resting-state fMRI signals reflect various aspects of the functional characteristics of the brain [21-25]. 
One of our previous studies reported that functional brain networks reflecting human characteristics 
were identified using rs-fMRI data [26]. In this study, by analyzing the rs-fMRI data acquired in the 
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previous study, the spatial and temporal relationship among the brain areas involved in categorically 
specific information processing related to perception and cognition could be examined.

Materials and Methods
Resting-state fMRI data from 153 subjects acquired in a previous study [26] were used for analysis. 

The brain areas involved in perception and cognitive processing were identified from Neurosynth. This 
is a platform for the large-scale, automated synthesis of fMRI data [27]. Several keywords such as 
visual, auditory, emotion, memory, attention, language, etc. were used for the identification of category-
selective brain areas. Estimation of latency distribution was examined by correlation analyses for the 
identified brain areas on the basis of the time at the maximum positive peak value at time courses in 
each brain area.

Results and Discussion
Ninety-six brain areas were identified from Neurosynth and were related to visual, auditory, emotion, 

memory, attention, language, etc. Table 1  shows the coordinates and functional categories of these 
brain areas. A correlation map was created from the time courses in these brain areas for each subject. 
The correlation maps corresponding to 153 subjects were averaged. The averaged correlation map 
showed several clusters of brain areas with high within/between-category correlation. The red circles 
in Figure 1  represent specific clusters reflecting different functional characteristics. The clusters 
showed differences in their sizes depending on function, and the largest cluster was the one consisting 

Figure 1. Correlation map of resting-state fMRI signals among the brain areas involved in processing information 
related to perception and cognition. Clusters surrounded by red circles indicate high correlation values（r > 0.6）. ① for 
visual areas, ② for auditory areas, ③ for memory areas, ④ for emotion areas, ⑤ for language areas related to auditory 
processing, ⑥ for short-term memory areas related to visual processing, ⑦ and ⑧ for attention areas related to visual 
processing, ⑨ for attention areas related to auditory processing, ⑩ for attention areas related to olfactory processing, 
⑪ for language areas related to phonetic processing, ⑫ for emotion areas related to word and sentence processing, ⑬ 
for emotion areas related to sensory memory, and ⑭ for other functions related to mental processing.
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of visual areas. Latencies were estimated for the time points around the positive maximum value of the 
brain areas, and a representative brain area such as the primary visual area was used as a reference 
area. The time course signals from the brain areas related to visual, auditory, attention, language, 
emotion, and social cognition were used to estimate the latency. Figures 2-5 show the latency 
differences between some of the visual areas, the latency differences between the auditory areas and 
the word processing areas, the latency differences between the auditory areas and the attention areas, 
and the latency differences between the emotion areas and the word processing areas, respectively. 
These figures show a tendency of latency delay from low to high levels.

The difference in latency estimated from rs-fMRI time courses suggests the possibility of functional 
causality related to signal flow in a basal state, and this information is potentially used to examine the 
functional dynamics of the brain. Further studies are needed to elucidate the functional causality of rs-
fMRI signals among these brain areas.
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Figure 2  | Rs-fMRI signals of brain areas related to visual information.
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Figure 3  Rs-fMRI signals of brain areas related to Auditory and Language information.

Figure 4  | Rs-fMRI signals of brain areas related to auditory and attention.
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Conclusions
Resting-state fMRI signals are likely to reflect intrinsic spatial and temporal information related to 

higher cognitive function as well as primary sensory information. We demonstrated temporal 
differences between category-specific areas. Our results suggest the potential use of rs-fMRI data for 
temporal/dynamic brain maps.
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Figure 5  Rs-fMRI signals of brain areas related to emotional information and word processing.
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